В начало | Зарегистрироваться | Заказать наши киты почтой
 
 
 
 

Простой метод выбора ключевых транзисторов для импульсных источников питания

📆20 сентября 2016   ✒️-=Sm()kE=-   🔎45.700   💬12  

На фотке — метод «ошибок трудных». Шурик, это не наш метод!

При проектировании или сборке по готовой схеме ИИП одним из острых вопросов является выбор ключей. И если по остальным деталям можно как-то подстроиться (мотать трансформатор в 2 провода вместо 1, если не хватает сечения или ставить два конденсатора параллельно вместо одного, если не хватает емкости и т.д.), то с ключами не так-то всё и просто. Неправильный выбор ведет к большому БУМУ (вспоминая знаменитый фильм Люка Бессона: «Бада-бум!») из-за теплового или электрического пробоя. И здесь тоже не всё просто. Электрический пробой произойдет сразу (или почти сразу), а вот тепловой можно ждать долго, и случится он в самый неподходящий ответственный момент.

В первый раз я задался вопросом выбора ключей около 8 лет назад. Куда же я пошел первым делом? В интернет, естественно, ага. В общем и целом могу теперь сказать так: зря я это сделал. Вопрос выбора ключей для импульсной техники в интернете оброс кучей недостоверных фактов, мифов и неправильными интерпретациями графиков в даташитах.
Мой способ выбора ключей тоже неидеальный и неполный. Однако в подавляющем большинстве случаев в радиолюбительской практике его окажется достаточно и даже за глаза, сами рады не будете.
Начнем!
Создайте тему на любом форуме, связанным с радиоэлектроникой, с вопросом: «Как выбрать ключи в ИИП?».
Ответы будут самые разнообразные: от «выбирай ключи по напряжению и максимальному току» до «выбирай ключи по графику Maximum Safe Operating Area». Сюда входят все вариации типа «выбирай на ток вдвое больше максимального тока первичной обмотки» до «надо чтобы мощность, выделяемая при падении напряжения на сопротивлении открытого перехода, была меньше максимальной рассеиваемой мощности корпуса».

Вот весь этот бред читают новички и далее «делятся опытом» с другими. Жуть, да и только.
Вот, к примеру, знаменитый график Maximum Safe Operating Area (оно же ОБР, область безопасной работы) для ключа IRFS840B:

Посмотрите на него внимательно. Посмотрите, какие оси создают этот график. Посмотрели? Больше никогда не смотрите в его сторону.
На этот график призывают смотреть люди, пришедшие из аналоговой линейной техники, линейных усилителей или линейных стабилизаторов.

Чем может быть полезен этого график для разработки импульсных преобразователей или импульсных же усилителей (они же D-класс или цифровые)? Ничем.
А, ну не совсем так: этот напоминание о том, что у полевых транзисторов отсутствует вторичный пробой и что транзистор может быть пробит как при превышении максимального рабочего напряжения, так и при превышении максимального тока через него.
Много это нам дало? Не-а, вообще ничего, это всё в начале даташита указывается словами.

Надо сказать честно, что тот график в отдельных даташитах действительно вводит в заблуждение неподготовленного человека, ибо иногда к таким графикам идет ещё один, указывающий зависимость выхода за ОБР от частоты работы транзистора. Но это всё для линейной техники, для тех ситуаций, когда есть недооткрытое или недозакрытое состояние транзисторов, когда есть некие переходные процессы.

Мы же собираемся делать технику, которая использует только 2 состояния транзистора: полностью открытое и полностью закрытое, никаких средних значений. Исходя из того, что график ОБР нам лишний раз напоминает: вторичного пробоя у полевых транзисторов нет. Следовательно, изначально нас сдерживают только 2 параметра: максимальная рабочая температура кристалла Tj, указывающая на то, когда начнется тепловой пробой, и максимальное рабочее напряжение исток-сток Vdss, определяющее, когда начнется электрический пробой.
Косвенно удерживает параметр ток стока Id, который влияет на нагрев кристалла.


Процесс выбора транзистора

Теперь, попробуем разобраться с вопросом подбора транзистора. С вопросом максимального напряжение ни у кого не должно возникнуть сомнений. Просто для страховки берем ключ на 200 Вольт больше, чем максимальное действующее напряжение в схеме. Например, в ИИП я советую 600-вольтовые ключи, не ниже.

Вопрос в том, что делать с температурой. Она таки считается! Для теплового расчета надо всего лишь узнать, сколько Ватт потерь получится при работе ключа и как сильно надо его охладить, чтобы не случилось теплового пробоя.
Если результат меньше Tj, то использовать такой транзистор можно. Если больше, увы и ах, но надо выбирать дальше.

Из чего состоит нагревание? Для начала из статических потерь, связанных с сопротивлением перехода Rds on, которое влияет на падение напряжения на переходе, в зависимости от протекающего через ключ тока. Это падение напряжение вызывает выделение мощности на кристалле и нагрев транзистора в открытом состоянии. Считается как произведение квадрата среднего тока импульса Iимп на сопротивление перехода Rds on и коэффициента заполнения Кзап. Последний показывает, какую часть времени транзистор открыт.

В большинстве радиолюбительских конструкции мостовых и полумостовых преобразователей и усилителей Кзап не выше 0.45, а дальнейшее увеличение его не приводит ни к чему особенно хорошему, кроме сильной боли в голове или ж
Так, ладно, со статическими потерями разобрались.

Теперь динамические потери. Эти потери — основная проблема в преобразователях на полевых транзисторах с жесткой коммутацией ключей. Они возникают в момент включения и выключения ключа. Так сказать, потери на переходных процессах. И чем выше частота преобразования, тем выше динамические потери. А ниже делать частоту тоже не хочется, ведь тогда вырастают размеры трансформатора.

Есть резонансные или квазирезонансные схемы, позволяющие значительно снизить динамические потери, но это уже сложная техника, к которой никак не подходит выражение «простой расчет».

Итак, динамические потери состоят из потерь при включении и потерь при выключении. Считается как произведение тока в начале (Ir) или конце (If) импульса, напряжения питания (Uпит) и времени нарастания (Tr) или спада (Tf), разделенное на двойной период импульса. Хочу сразу заметить: отдельно считаются потери при включении и отдельно при выключении, а потом суммируются.

Теперь охлаждение. Основная проблема охлаждения — тепловое сопротивление между разными материалами. У транзистора таких мест 2: между кристаллом и корпусом транзистора, а так же между корпусом транзистора и радиатором. Эти значения табличные и не требующие вычислений. Первое значение берется из даташита на транзистор. Второе тоже можно взять оттуда, если оно там имеется. Если нет, то берётся усредненное значение.

Итак, потери подсчитаны, пора применять в деле. Первым делом, складываем потери динамические и статические, получаем общие потери — это сколько Ватт надо отвести от кристалла.

Затем складываем тепловые сопротивления.

Теперь умножаем общие потери на тепловое сопротивление. Получившийся результат — та температура, которую нужно «сдувать» с радиатора. Вычтем из ожидаемой рабочей температуры получившуюся, и на выходе нас ждет ожидаемая температура радиатора.
Именно по ней можно оценить, подходит или нет транзистор.

Как? Очень просто. Ожидаемая температура радиатора не может быть ниже температуры окружающей среды при естественном охлаждении. То есть, если у вас получился результат +24°, а на улице +32° то всё, кранты! Транзисторы ждёт тепловой пробой, потому как никакой супервентилятор не сможет охладить радиатор до 24 градусов, если температура воздуха выше. Совсем печально, если результат получился отрицательным. Если у вас нет фреоновой или азотной системы охлаждения, лучше выбрать другой транзистор.

Тонкости

Разумеется, в деле, подобном этому, есть свои тонкости и особенности. В целом, можно это охарактеризовать выражением «не доводи до крайностей», которое весьма полно объясняет чего нельзя делать, чтобы не бабахнуло.

В первую очередь это касается температур. Tj — это максимальная рабочая температура кристалла транзистора, фактически потолок его работоспособности. Было бы как минимум нелепо использовать это значение при расчете. Никогда не загоняйте параметры в угол, всегда оставляйте место для маневра.

Я, к примеру, использую в расчёте температуру на 5-10° ниже, и обзываю ее «Температура ожидаемая» — Tож.. Так как наиболее часто Tj указывается в районе 125° Цельсия, я использую в расчете 115-120°.

Далее, температуру окружающей среды для оценки тоже не следует брать наобум. Есть утвержденные ГОСТы, хотя можно просто принять для средней полосы +35° и +45° для южных регионов. Это для того, чтобы в набитом людьми помещении летом техника не сгорела синим пламенем. Ну и для случаев колебания температур.
Для работы на открытом воздухе под солнцепеком есть еще более жесткие условия, но это уже за рамками радиолюбительства.

Далее о напряжениях. Всегда стоит сделать запас прочности по допустимому напряжению. Опять-таки, в даташите параметр Vdss — предельный. И подбор транзистора строго под выпрямленное напряжение сети может сыграть злую шутку. Посчитаем: при напряжении в сети 220 Вольт на выходе мостового выпрямителя будет 310 Вольт. Однако в реальности в сети редко бывает 220 Вольт, и скачки до 20%, увы, обыденное явление. И что же будет, если напряжение в сети увеличится на эти 20%? На выходе выпрямителя будет уже 378 Вольт. Добавим сюда шум от сварочника и, вуаля, 400-вольтовый ключ искрится и взрывается.

Мне довелось отремонтировать очень много усилителей, в которых многочисленные дядюшки Ляо экономили на транзисторах. Не делайте так, разочарований будет куда больше экономии.

Как-то блуждая по просторам интернета, я наткнулся на аппноут IR, рекомендовавший выбирать ключи с запасом в 200 — 250 Вольт от максимального напряжения в схеме. Увы, этот аппноут я не сохранил, а затем найти его не смог. У кого-то есть сомнения, что он вообще существует, но сама рекомендация звучит достаточно трезво, пусть и относительно недёшево.

Теперь о сопротивлении перехода. В открытом состоянии идеальный ключ должен пропускать весь ток без потерь. Увы, живём мы в неидеальном мире. В настолько неидеальном, что маркетологи с удовольствием этим пользуются. Открывая даташит любого полевого транзистора можно увидеть маленькую характеристику Rds on, написанную большим шрифтом. Так вот: это сопротивление перехода при некоей „комнатной“ температуре в 20-25 градусов. Для того же IRFS840B указывается 0,8 Ома.

Это всё красиво только на словах, на деле кристалл в процессе работы будет нагреваться, что неизбежно приведет к увеличению сопротивления открытого перехода. Об этом мало кто помнит, но именно на это надо опираться, при выборе подходящего транзистора.
Чаще всего в даташитах не указывают эти печальные цифры, а лишь приводят график температурного коэффициента сопротивления ТКС, вот он для выбранного нами транзистора:

Как видно на графике, при нагревании сопротивление открытого перехода быстро увеличивается, и для рекомендованных мною максимальных рабочих 120° ТКС открытого канала уже составляет 2,1 Ома, а значит из приятных 0,8 Ом уже получаются малоприятные 1,68 Ома. Печаль, да и только, но с этим надо считаться.

Ну и последняя из тонкостей. Обязательно учитывайте крайние характеристики транзистора. В таблицах даташита всегда указывается три значения: минимальное, типичное и максимальное (или лучшее, типичное и худшее). Это касается практически всего. Например, время открытия и время закрытия. Причем с маркетинговой точки зрения делается упор именно на типичное время открытия и закрытия. Так, например, для IRFS840B типичное время нарастания составляет 65 нс, что и пишется всюду, хотя отдельные экземпляры доходят до 140 нс, что более чем в 2 раза дольше! Соответственно, для расчета необходимо использовать именно худшее значение, если нет желания отбирать транзисторы для конструкции.

Подытожим

Для выбора ключевого транзистора необходимо:

  1. Всегда помнить о неидеальности условий окружающей среды
  2. Использовать в расчете параметры наихудших экземпляров
  3. Всегда оставлять запас и место для маневров
  4. Иметь ввиду тепловые изменения параметров
  5. Не давать кристаллу перегреваться
  6. Не допускать перенапряжения из-за плохой сети

Все остальное считается и выбирается.

И вот здесь у меня для вас есть бонус. Так как я всё же ленив, то сделал таблицу в Excel, которая сама всё посчитает. Остается только сделать вывод о пригодности или непригодности транзистора.

Файлы

🎁thermal_calc.zip  2.33 Kb ⇣ 299
Краткая инструкция по использованию: редактируются только желтые ячейки, данные вписываются исходя из проектируемой конструкции (частота преобразования, напряжение питания, коэффициент заполнения) и из даташита на транзистор (все остальное).
В зеленых ячейках получаем результаты. Как интерпретировать, читайте выше.

Для преобразователей с жесткой коммутацией ключей (традиционные) ток в начале импульса (Ir) и ток в конце импульса (If) равны среднему току импульса.

Для нетрадиционных вариантов типа резонансных ZVC и прочих — согласно расчету, вплоть до 0.
Для примера, в таблицу уже внесены данные на полюбившийся IRFS840B, в полумостовом преобразователе с жесткой коммутацией ключей со средним током первичной обмотки 2А.

Очень надеюсь, что этот маленький опус поможет выбрать транзисторы правильно и при этом не убить нервы.
Всем удачи! Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.




 

Читательское голосование

Нравится

Статью одобрили 163 читателя.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.
 

Поделись с друзьями!

 

 

Связанные материалы

 

Схема на Датагоре. Новая статья Простая аналоговая электронная нагрузка... Все, кто хоть как-то сталкивался с изготовлением, ремонтом блоков питания задавался вопросом – где...
Схема на Датагоре. Новая статья Импульсные источники питания. Теоретические основы проектирования и руководство по практическому применению. Р. Мэк... Импульсные источники питания. Теоретические основы проектирования и руководство по практическому...
Схема на Датагоре. Новая статья 300 схем источников питания. Шрайбер.... 300 схем источников питания. Шрайбер. Эта книга посвящена источникам питания - как низкочастотным,...
Схема на Датагоре. Новая статья Широкополосные динамики Visaton BG-20 в акустике домашнего кинотеатра... Данный проект был реализован 2 года назад. Бюджет составил около 15 000 руб. (без проводов) Задумка...
Схема на Датагоре. Новая статья Обратная связь по току или "Почти ламповый усилитель..."... Большинство граждан этого виртуального города пришли сюда вместе с желанием сделать хороший...
Схема на Датагоре. Новая статья Микросхемы для импульсных источников питания и их применение... Хочу предложить Вашему вниманию справочник "Микросхемы для импульсных источников питания и их...
Схема на Датагоре. Новая статья Демпфирование наушников Sennheiser HD515... При прослушивании некоторых композиций при повышенной громкости звук приобретает скрипящий,...
Схема на Датагоре. Новая статья Силовая электроника. От простого к сложному. Семенов Б.Ю. 2005... Почитай, друг! Почерпнешь из этой книги что-нибудь интересное, новое, а может освежишь в памяти...
Схема на Датагоре. Новая статья Импульсный стабилизированный преобразователь напряжения для автомобильного усилителя... Схемку нашел на сайте Интерлавки. Собрал я данный преобразователь и в принципе остался им доволен,...
Схема на Датагоре. Новая статья Реинкарнация компьютерных БП. Часть 3.... Из все тех же деталей компьютерного БП, используя абсолютный их минимум и не меняя практически...
Схема на Датагоре. Новая статья Стандарты измерения выходной мощности... В этой статье вкратце рассказывается о мощности. Разъясняются такие параметры как номинальная и...
Схема на Датагоре. Новая статья Пассивный корректор АЧХ для наушников Axelvox HD241 (Superlux HD681)... Источник фото: Делаем хорошие бюджетные наушники «Axelvox HD241» ещё лучше. Выравниваем АЧХ,...
 

Комментарии, вопросы, ответы, дополнения, отзывы

 

<
Читатель Датагора

Yamazaki

<
Читатель Датагора

-=Sm()kE=-

<
Читатель Датагора

shursh

<
Читатель Датагора

Alexverb

<
Читатель Датагора

stas

<
Читатель Датагора

StalKer-NightMan

<
Читатель Датагора

nick_shuvalov

<
Читатель Датагора

tlimb

<
Читатель Датагора

Алексей

<
Читатель Датагора

sklad

<
Читатель Датагора

skladan

<
Читатель Датагора

Lisyonok

Добавить комментарий, вопрос, отзыв 💬

Камрады, будьте дружелюбны, соблюдайте правила!

  • Смайлы и люди
    Животные и природа
    Еда и напитки
    Активность
    Путешествия и места
    Предметы
    Символы
    Флаги
 
 
В начало | Зарегистрироваться | Заказать наши киты почтой