Появилась идея создать очень маленький и легкий блок питания для низковольтного паяльника. При этом очень просто реализуется разделение питания паяльника и электрической сети, что значительно повышает безопасность.
После ознакомления со статьей «Dimmer (регулятор яркости)» от igRoman [1], в которой управление аналогом однопереходного транзистора было реализовано на полевом транзисторе, появилась идея применения принципа управления, изложенного в этой статье, для создания стабилизатора напряжения для низковольтного паяльника на базе схемы электронного трансформатора.
Содержание статьи / Table Of Contents
↑ Технические характеристики БП
● Выходное напряжение регулируется в пределах 15 — 38 Вольт, ток переменный.● Наличие выходов для паяльника с напряжением 12, 24 или 36 Вольт.
● Ток нагрузки до 1,2 А.
● Выход для питания микродрели, примерно 30 — 50 Вольт, ток 0,2 А. Ток постоянный.
● Выход для питания обжигалки для проводов 4 — 6 Вольт, ток до 5 А. Ток переменный.
● При изменении напряжения сети в пределах 180 — 240 Вольт, напряжение на паяльнике изменятся не более чем на 1,5%.
↑ Принципиальная схема
Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Его особенностью является то, что переключение транзисторов происходят в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.
Началом возникновения генерации можно управлять с помощью RC цепи, работающей на однопереходной транзистор или его аналог, который выдает короткий импульс для первоначального запуска автогенератора в начале каждого полупериода сети. При этом на выходе образуются пакеты высокочастотных импульсов, длительность которых и определяет выходное напряжение автогенератора.
Применение аналога однопереходного транзистора связано с тем, что с нагрузкой или без нее программируемый однопереходный транзистор (ПОПТ) выдает только один импульс в течение полупериода и переходит в режим удержания.
↑ Оптоэлектрический преобразователь
К сожалению, однопереходной транзистор КТ117 выдает серию импульсов при работе без нагрузки, которые плохо влияют на работу выходного каскада электронного трансформатора.После ряда экспериментов в качестве преобразователя импульсного выходного напряжения в значение эффективного для регулирования был применен оптоэлектрический преобразователь, состоящий из лампы накаливания, двуханодного стабилитрона, регулировочного резистора и фоторезистора. При этом, благодаря инерционности нити накала лампы, получилось прекрасное интегрирование значения выходного напряжения для цепей управления.
В первом варианте схемы, была сделана попытка применить TL431 для стабилизации выходного напряжения, но попытка потерпела неудачу (паразитные колебания, которые я не смог устранить).
↑ Стабилизация
При увеличении выходного напряжения зажигается лампа Л1, и напряжение на затворе VT1 снижается, что увеличивает время заряда конденсатора C3 и выходное напряжение снижается. При уменьшении напряжения процесс протекает в обратном порядке.Для нормальной работы преобразователь должен быть нагружен, иначе прерывается обратная связь по току нагрузки, протекающему через трансформатор T1, и генерация может не возникнуть или будет неустойчивой.
Токовый трансформатор T1 работает в режиме насыщения и определяет частоту генерации. Поэтому число витков катушки связи подбирается по замедлению роста напряжения на базовой обмотке. После этого рассчитывается число витков базовой обмотки так, чтобы на ней было напряжение около 2 — 3 Вольт. Затем рассчитывается сопротивления в базовых цепях из расчета величины базового тока 0,1 — 0,3А.
↑ Описание работы схемы
Питание осуществляется от сети 220 Вольт.На входе стоит помехоподавляющий конденсатор C1 и защитный резистор R1, который работает как предохранитель.
Транзистор VT1 управляет током заряда времязадающего конденсатора C3. Управление происходит с помощью фоторезистивной пары Л1 и R11.
Аналог однопереходного транзистора собран на VT2 и VT3. Короткие импульсы запуска с аналога через резистор R18 поступают на базу нижнего плеча силового ключа VT5 и VT4 и вызывают начало генерации в каждом полупериоде сети.
К силовым ключам, через обмотку обратной связи трансформатора Т1, подключен выходной трансформатор Т2.
Трансформатор T1 работает в режиме насыщения и от его параметров зависит частота генерации.
Трансформатор T2 работает без захода в режим насыщения.
Диоды D6 и D11 служат для обеспечения полного разряда конденсатора C3 при прохождении напряжения питающей сети через ноль. При этом гарантируется стабильное время заряда C3 с начала следующего полупериода.
Двуханодный стабилитрон D10 делает регулировочную характеристику более жесткой, чем повышает стабильность выходного напряжения.
Для питания встроенного вольтметра сделана отдельная обмотка, которая питает вольтметр, и с нее же снимается значение выходного напряжения и после интегрирования поступает на измерительный вход вольтметра.
С диодного моста Br1 выпрямленное и сглаженное напряжение поступает на гнезда 50 Вольт для питания микродрели.
Отдельная обмотка на 5 Вольт (эффективного значения) и ток до 5А предназначена для питания «обжигалки» для снятия изоляции проводов.
↑ Конструкция и детали
Конструктивно все элементы схемы расположены на печатной плате, а выходные гнезда, выключатель, вольтметр и регулятор напряжения расположены на передней панели. Передняя панель и плата скреплены между собой стойками длиной 35 мм с резьбой М3.
Корпус сделан из тонкой жести.
↑ Оптоэлектрический преобразователь
представляет собой черную трубку от кабеля, в которую с одной стороны вставлена и закреплена миниатюрная лампочка, а с другой фоторезистор. Расстояние между ними примерно 3 мм (разделены маленьким отрезком трубки ПХВ). Черная трубка не пропускает внешнего света и на концах прошита нитками.Лампочка Л1 — миниатюрная с гибкими выводами от подсветки в автомобильных магнитолах.
Фоторезистор применен с темновым сопротивлением 1М или больше.
К силовым транзисторам прикручен небольшой радиатор (2,5×4 см), который практически не греется при работе (температура около 40 градусов).
Конденсаторы C8 и C9 на напряжение 250 Вольт, а C7 на напряжение 63 вольта.
Резистор R2 МЛТ-2, 62 ком 2 вт.
Резистор R13 — ППБ-2А 680 ом.
Двуханодный стабилитрон D10 может быть заменен двумя одинаковыми встречно включенными стабилитронами.
↑ Моточные изделия
Моточные данные трансформаторов указаны на принципиальной схеме.Сердечник трансформатора T1 взят от энергосберегающей лампы. Обмотки 2×2 витков и 3 витка.
Число витков зависит от сердечника трансформатора T1 и уточняется при настройке.
↑ Встроенный вольтметр
Для измерения выходного напряжения применен миниатюрный вольтметр на семисегментном LED индикаторе и PIC16F684 [2], который плотно вставлен в лицевую панель.↑ Налаживание
Число витков трансформатора T1 уточняется при настройке, чтобы получить частоту генерации примерно 35 — 55 кГц при работе блока на нагрузку мощностью не менее 10 Вт.R5 — определяет минимальное выходное напряжение.
↑ Осциллограммы выходных напряжений:
↑ Напряжение 12 Вольт, развертка 2 мс/дел.
↑ Напряжение 24 Вольт, развертка 2 мс/дел.
↑ Напряжение 38 Вольт, развертка 2 мс/дел.
↑ Высокочастотное заполнение, развертка 20 мксек/дел.
↑ Файлы
🎁Плата БП, плата вольтметра, лицевая панель.7z 23.57 Kb ⇣ 39↑ Итоги
Получился прибор легкий, стабилизированный, обеспечивающий безопасную работу.Из замеченных недостатков следует отметить, что из-за своей простоты электронные трансформаторы являются источниками высокочастотных помех и наводок.
↑ Ссылки
При разработке использованы следующие материалы:1. igRoman, «Dimmer (регулятор яркости)»
2. И. Внуковский, «Миниатюрный вольтметр на семисегментном LED индикаторе и PIC16F684»
Спасибо за внимание!
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.